Books

  • Binz, Ernst; Pods, Sonja: The geometry of Heisenberg groups. With applications in signal theory, optics, quantization, and field quantization. With an appendix by Serge Preston. Mathematical Surveys and Monographs, 151. American Mathematical Society, Providence, RI, 2008. xvi+299 pp. ISBN: 978-0-8218-4495-3
  • Binz, Ernst; Śniatycki, Jedrzej; Fischer, Hans: Geometry of classical fields.
    DOVER PUBLICATIONS, INC., Mineola, N.Y. 206
  • Binz, Ernst; Śniatycki, Jedrzej; Fischer, Hans: Geometry of classical fields. North-Holland Mathematics Studies, 154. Notas de Matemática [Mathematical Notes], 123. North-Holland Publishing Co., Amsterdam, 1988. xviii+450 pp. ISBN: 0-444-70544-9
  • Binz, E.: Convergence structures on C(X). Summer School on Topological Vector Spaces (Univ. Libre Bruxelles, Brussels, 1972), pp. 203--210. Lecture Notes in Math., Vol. 331, Springer, Berlin, 1973.

Papers

  • B. J. Hiley, M. A. de Gosson and E. Binz: Clifford Algebras in Symplectic Geometry and Quantum Mechanics, (2011)
  • Binz, Ernst; Rieckers, Alfred: Symplectic geometry of Maxwell theory and the photon concept. To be published in the Proceedings of Symmetries in Scienece XIV.
  • Binz, Ernst; Honegger, Reinhard; Rieckers, Alfred: Infinite dimensional Heisenberg group algebra and field-theoretic strict deformation quantization. Int. J. Pure Appl. Math. 38 (2007), no. 1, 43-78
  • Binz, Ernst; Pods, Sonja: A Heisenberg algebra bundle of a vector field in three-space and its Weyl quantization. Quantum theory: reconsideration of foundations 3, 67 - 80, AIP Conf. Proc., 810, Amer. Inst. Phys., Melville, NY, (2006).
  • Binz, E.; Pods, S.: The Heisenberg group in classical and quantum information transmission. Symmetries in science XI, 55 - 103, Kluwer Acad. Publ., Dordrecht, (2004).
  • Binz, Ernst; Pods, Sonja: Classical and quantum information transmission. Quantum theory: reconsideration of foundations 2, 101 - 112, Math. Model. Phys. Eng. Cogn. Sci., 10, Växjö Univ. Press, Växjö, (2004).
  • Binz, Ernst; Honegger, Reinhard; Rieckers, Alfred: Construction and uniqueness of the C*-Weyl algebra over a general pre-symplectic space. J. Math. Phys. 45 (2004), no. 7, 2885 - 2907.
  • Binz, Ernst; Honegger, Reinhard; Rieckers, Alfred: Field-theoretic Weyl quantization as a strict and continuous deformation quantization. Ann. Henri Poincaré 5 (2004), no. 2, 327 - 346.
  • Binz, Ernst; Schempp, Walter: Entanglement, parataxy, and cosmology. Jean Leray '99 Conference Proceedings, 483 - 542, Math. Phys. Stud., 24, Kluwer Acad. Publ., Dordrecht, (2003).
  • Binz, Ernst; Schempp, Walter: Quantum teleportation and spin echo: a unitary symplectic spinor approach. Computational geometry (Beijing, 1998), 133 - 177, AMS/IP Stud. Adv. Math., 34, Amer. Math. Soc., Providence, RI, (2003).
  • Binz, Ernst; Pods, Sonja; Schempp, Walter: Heisenberg groups - the fundamental ingredient to describe information, its transmission and quantization. J. Phys. A 36 (2003), no. 23, 6401 - 6421.
  • Binz, Ernst; Pods, Sonja; Schempp, Walter: Heisenberg groups - a unifying structure of signal theory, holography and quantum information theory. J. Appl. Math. Comput. 11 (2003), no. 1 - 2, 1 - 57.
  • Binz, Ernst; Pods, Sonja; Schempp, Walter: Spinor geometry and signal transmission in three-space. Computing anticipatory systems (Liège, 2001), 267 - 275, AIP Conf. Proc., 627, Amer. Inst. Phys., Melville, NY, (2002).
  • Binz, Ernst; Schempp, Walter: Digital information processing: the Lie groups defining the filter banks of the compact disc. Proceedings of the Fourth International Conference on Functional Analysis and Approximation Theory, Vol. I (Potenza, 2000). Rend. Circ. Mat. Palermo (2) Suppl. (2002), no. 68, part I, 269 - 292
  • Binz, Ernst; Schempp, Walter: J. Kepplers phoronomie: symplektische spinoren. (German) [Kepler's phoronomy: symplectic spinors] Results Math. 41 (2002), no. 3 - 4, 229  - 257.
  • Binz, Ernst; de León, Manuel; de Diego, David Martin; Socolescu, Dan: Nonholonomic constraints in classical field theories. XXXIII Symposium on Mathematical Physics (Torún, 2001). Rep. Math. Phys. 49 (2002), no. 2 - 3, 151 - 166.
  • Binz, Ernst; Schempp, Walter: Information technology: the Lie groups defining the filter banks of the compact disc. J. Comput. Appl. Math. 144 (2002), no. 1 - 2, 85 - 103.
  • Binz, Ernst; Elżanowski, Marek Z.: Another look at the evolution of material structures. Math. Mech. Solids 7 (2002), no. 2, 203 - 214.
  • Binz, Ernst; Schempp, Walter: Information technology: the Lie groups defining the filter banks of the compact disc. Informatica (Ljubl.) 25 (2001), no. 2, 279 - 291.
  • Binz, Ernst; Schwarz, Günter; Wenzelburger, Jan: On the dynamics of continuous distributions of dislocations. Quart. Appl. Math. 59 (2001), no. 2, 225 - 239.
  • Binz, Ernst; Schempp, Walter: Quantum hologram and relativistic hodogram: magnetic resonance tomography and gravitational wavelet detection. Geometry, integrability and quantization (Varna, 2000), 110 - 150, Coral Press Sci. Publ., Sofia, (2001)
  • Binz, E.; Socolescu, D.: Media with microstructures and thermodynamics from a mathematical point of view. Geometry, continua and microstructures, I (Turin, 2000). Rend. Sem. Mat. Univ. Politec. Torino 58 (2000), no. 1, 17 - 23 (2002).
  • Binz, E.; Pods, S.; Schempp, W.: Natural microstructures associated with singularity free gradient fields in three-space and quantization. Geometry, continua and microstructures, I (Turin, 2000). Rend. Sem. Mat. Univ. Politec. Torino 58 (2000), no. 1, 1 - 15 (2002)
  • Binz, Ernst; Schempp, Walter: Projective geometry and Kepler's libration theory. Quantum theory and symmetries (Goslar, 1999), 572 - 576, World Sci. Publ., River Edge, NJ, 2000.
  • Binz, Ernst; Schempp, Walter: Vector fields in three-space, natural internal degrees of freedom, signal transmission and quantization. Results Math. 37 (2000), no. 3-4, 226 - 245.
  • Binz, Ernst; Schempp, Walter: A unitary parallel filter bank approach to magnetic resonance tomography. Symmetry in nonlinear mathematical physics, Part 1, 2 (Kyiv, 1999), 419 - 428, Pr. Inst. Mat. Nats. Akad. Nauk Ukr. Mat. Zastos., 30, Part 1, 2, Natsīonal. Akad. Nauk Ukraïni, Īnst. Mat., Kiev, (2000).
  • Binz, Ernst; de León, Manuel; Socolescu, Dan: Global dynamics of media with microstructure. Proceedings of the Second International Seminar on Geometry, Continua and Microstructure (Getafe, 1998). Extracta Math. 14 (1999), no. 2, 99 - 125.
  • Binz, Ernst; Schempp, Walter: Quantum teleportation and spin echo: a unitary symplectic spinor approach. Aspects of complex analysis, differential geometry, mathematical physics and applications (St. Konstantin, 1998), 314 - 365, World Sci. Publ., River Edge, NJ, (1999).
  • Binz, E.: On discrete media, their interaction forms and the origin of non-exactness of the virtual work. Symmetries in science, X (Bregenz, 1997), 47 - 61, Plenum, New York, (1998).
  • Binz, E.; Oellers, P.: The mass-squared operator and the Einstein-Hilbert action for rescaled Lorentz metrics. Symmetries in science, IX (Bregenz, 1996), 25 - 35, Plenum, New York, (1997).
  • Binz, E.: Structural capillarity, equilibrium configurations and vibrational modes of an idealized skin made up by finitely many particles. Commun. Appl. Anal. 1 (1997), no. 2, 213 - 243.
  • Binz, E.; Oellers, P.: Einstein equation and geometric quantization. Lie theory and its applications in physics (Clausthal, 1995), 239 - 246, World Sci. Publ., River Edge, NJ, 1996.
  • Binz, E.: From the discrete to a continuum. Lie theory and its applications in physics (Clausthal, 1995), 199 - 215, World Sci. Publ., River Edge, NJ, (1996)
  • Binz, E.: Idealized skins constituted by finitely many material particles. Proceedings of the Third Meeting on Current Ideas in Mechanics and Related Fields (Segovia, 1995). Extracta Math. 11 (1996), no. 1, 1 - 16
  • Binz, E.: From a discrete setting to a smooth idealized skin. Colloque Trajectorien à la Mémoire de Georges Reeb et Jean-Louis Callot (Strasbourg-Obernai, 1995), 59 - 73, Prépubl. Inst. Rech. Math. Av., 1995/13, Univ. Louis Pasteur, Strasbourg, (1995).
  • Binz, Ernst: Idealized skins determined by finitely many particles. Grazer Mathematische Berichte [Graz Mathematical Reports], 325. Karl-Franzens-Universität Graz, Graz, 1995. ii+70 pp.
  • Binz, E.: A symplectic derivation of the dynamics of any smoothly deformable medium. Classical and quantum systems (Goslar, 1991), 727 - 732, World Sci. Publ., River Edge, NJ, 1993.
  • Binz, E.: On the irredundant part of the first Piola-Kirchhoff stress tensor. Rep. Math. Phys. 32 (1993), no. 2, 175 - 210.
  • Ackermann, T.; Binz, E.: Deformable media with microstructure. Symmetries in science, VI (Bregenz, 1992), 1 - 17, Plenum, New York, (1993).
  • Binz, E.; Schwarz, G.: The principle of virtual work and a symplectic reduction of nonlocal continuum mechanics. Rep. Math. Phys. 32 (1993), no. 1, 49 - 69.
  • Binz, E.; Fischer, H. R.: One-forms on spaces of embeddings: a framework for constitutive laws in elasticity. Dedicated to the memory of Professor Gottfried Köthe. Note Mat. 11 (1991), 21 - 48
  • Binz, E.: Global differential geometric methods in elasticity and hydrodynamics. Differential geometry, group representations, and quantization, 3 - 29, Lecture Notes in Phys., 379, Springer, Berlin, (1991).
  • Binz, E.: Symmetry, constitutive laws of bounded smoothly deformable media and Neumann problems. Symmetries in science, V (Lochau, 1990), 31 - 65, Plenum, New York, 1991.
  • Binz, E.: Constitutive laws of bounded smoothly deformable media. Geometry and theoretical physics (Bad Honnef, 1990), 23 - 55, Springer, Berlin, (1991).
  • Binz, E.; Socolescu, D.: On a global differential geometric approach to the rational mechanics of deformable media. Symmetries in science, III (Vorarlberg, 1988), 33 - 83, Plenum, New York, (1989).
  • Binz, E.: On the notion of the stress tensor associated with Rn-invariant constitutive laws admitting integral representations. Rep. Math. Phys. 27 (1989), no. 1, 49 - 58.
  • Binz, E.: Isometric Euclidean embeddings of a compact manifold form a Fréchet manifold. Rep. Math. Phys. 26 (1988), no. 2, 157 - 167.
  • Binz, E.: Natural Hamiltonian systems on spaces of embeddings. Proceedings of the XV International Conference on Differential Geometric Methods in Theoretical Physics (Clausthal, 1986), 466 - 478, World Sci. Publ., Teaneck, NJ, (1987).
  • Binz, Ernst; Śniatycki, Jedrzej: Conservation laws in spacetimes with boundary. Classical Quantum Gravity 3 (1986), no. 6, 1191 - 1197.
  • Binz, E.: On the structure of Euclidean isometric immersions. Differential geometric methods in theoretical physics (Shumen, 1984), 278 - 296, World Sci. Publishing, Singapore, (1986).
  • Binz, E.; Peter, Th.: On deformation of differentials of immersions. Differential geometric methods in mathematical physics (Jerusalem, 1982), 225 - 240, Math. Phys. Stud., 6, Reidel, Dordrecht, (1984).
  • Binz, E.: The space of smooth isometric immersions of a compact manifold into an Euclidean space is a Fréchet manifold. C. R. Math. Rep. Acad. Sci. Canada 6 (1984), no. 5, 309 - 314
  • Binz, E.; Pferschy, R.: The Dirac operator and the change of the metric. C. R. Math. Rep. Acad. Sci. Canada 5 (1983), no. 6, 269 - 274.
  • Binz, E.: Einstein's evolution equation for the vacuum formulated on a space of differentials of immersions. Nonlinear partial differential operators and quantization procedures (Clausthal, 1981), 2 - 37, Lecture Notes in Math., 1037, Springer, Berlin, (1983).
  • Binz, E.: On the Levi-Civita connection of a gauged Levi-Civita connection. C. R. Math. Rep. Acad. Sci. Canada 4 (1982), no. 2, 117 - 122.
  • Binz, E.; Fischer, H. R.: The manifold of embeddings of a closed manifold. With an appendix by P. Michor. Lecture Notes in Phys., 139, Differential geometric methods in mathematical physics (Proc. Internat. Conf., Tech. Univ. Clausthal, Clausthal-Zellerfeld, 1978), pp. 310 - 329, Springer, Berlin-New York, (1981)
  • Binz, E.: The notion of torsion and second fundamental tensor revisited. C. R. Math. Rep. Acad. Sci. Canada 3 (1981), no. 2, 93 - 98.
  • Binz, E.: Two natural metrics and their covariant derivatives on a manifold of embeddings. Monatsh. Math. 89 (1980), no. 4, 275 - 288
  • Binz, E.: On an extension of Pontryagin's duality theory. General topology and its relations to modern analysis and algebra, IV (Proc. Fourth Prague Topological Sympos., Prague, 1976), Part A, pp. 1 - 20. Lecture Notes in Math., Vol. 609, Springer, Berlin, (1977).
  • Binz, E.: Charaktergruppen von Gruppen von S1-wertigen stetigen Funktionen. (German) Categorical topology (Proc. Conf., Mannheim, 1975), pp. 43 - 92. Lecture Notes in Math., Vol. 540, Springer, Berlin, (1976).
  • Binz, E.: Representations of convergence algebras as algebras of real-valued functions. Symposia Mathematica, Vol. XVII (Convegno sugli Anelli di Funzioni Continue, INDAM, Rome, 1973), pp. 81 - 91. Academic Press, London, (1976).
  • Binz, Ernst: Continuous convergence on C(X). Lectures Notes in Mathematics, Vol. 469. Springer-Verlag, Berlin-New York, 1975. ix+140 pp.
  • Binz, E.: Functional analytic methods in topology. Symposia Mathematica, Vol. XVI (Convegno sulla Topologia Insiemistica e Generale, INDAM, Rome, 1973), pp. 191 - 208. Academic Press, London, (1975).
  • Binz, E.; Kutzler, K.: Über metrische Räume und Cc(X). (German) Ann. Scuola Norm. Sup. Pisa. (3) 26 (1972), 197 - 223.
  • Binz, E.: Recent results in the functional analytic investigations of convergence spaces. General topology and its relations to modern analysis and algebra, III (Proc. Third Prague Topological Sympos., 1971), pp. 67 - 72. Academia, Prague, (1972).
  • Binz, E.; Butzmann, P.; Feldman, W.; Kutzler, K.; Schroder, M.: On Ω-admissible vector space topologies on C(X). Math. Ann. 196 (1972), 39 - 47.
  • Binz, Ernst; Butzmann, Heinz-Peter; Kutzler, Kurt: Über den c-Dual eines topologischen Vektorraumes. (German) Math. Z. 127 (1972), 70 - 74.
  • Binz, E.; Butzmann, H.-P.; Kutzler, K.: Bemerkungen über eine Klasse von R-Algebrentopologien auf C(X). (German) Arch. Math. (Basel) 23 (1972), 80 - 82.
  • Binz, E.; Feldman, W.: A functional analytic description of normal spaces. Canad. J. Math. 24 (1972), 45 - 49.
  • Binz, E.; Feldman, W.: On a Marinescu structure on  C(X). Comment. Math. Helv. 46 (1971), 436 - 450
  • Binz, E.; Neukirch, J.; Wenzel, G. H.: A subgroup theorem for free products of pro-finite groups. J. Algebra 19 (1971) 104 - 109.
  • Binz, E.: Notes on a characterization of function algebras. Math. Ann. 186 (1970) 314 - 326.
  • Binz, E.: Convergence spaces and convergence function algebras. (1969) Proc. Internat. Sympos. on Topology and its Applications (Herceg-Novi, 1968) pp. 87 - 92 Savez Društava Mat. Fiz. i Astronom., Belgrade
  • Binz, E.: On closed ideals in convergence function algebras. Math. Ann. 182 (1969) 145 - 153.
  • Binz, E.: Zu den Beziehungen zwischen c-einbettbaren Limesräumen und ihren limitierten Funktionenalgebren. (German) Math. Ann. 181 (1969) 45 - 52.
  • Binz, E.: Kompakte Limesräume und limitierte Funktionenalgebren. (German) Comment. Math. Helv. 43 (1968) 195 - 203.
  • Binz, E.: Bemerkungen zu limitierten Funktionenalgebren. (German) Math. Ann. 175 (1968) 169 - 184
  • Binz, E.; Meier-Solfrian, W.: Zur Differentialrechnung in limitierten Vektorräumen. (German) Comment. Math. Helv. 42 (1967) 285 - 296.
  • Binz, Ernst: Ein Differenzierbarkeitsbegriff in limitierten Vektorräumen. (German) Comment. Math. Helv. 41 (1966/1967) 137 - 156.
  • Binz, E.; Keller, H. H.: Funktionenräume in der Kategorie der Limesräume. (German) Ann. Acad. Sci. Fenn. Ser. A I No. 383 (1966) 21 pp.